

CMB 551 Module 1A

Image processing and quantitative image analysis

Sam Johnson

Benjamin Carlson

File:
Filename_to_open

Microscopy images are somewhat different to other fields

Microscopy data are in many formats

Microscope specific formats

LIF, LEI, LSM, ZVI, STK, OIB, OIF, dv, ICS/IDS, ICS2, r3d, PIC, IPL, CXD, SDT, IPW, ND2, RAW, IMS. . .

- √ Types of images bitmap/vector and compression
- ✓ Bit-depth, histogram, scaling and gamma
- ✓ Export to standard formats for figures
- ✓ Color use and misuse
- ✓ 3D images Projections and other views
- ✓ Stitching and alignment
- ✓ Image processing Filters
- ✓ Segmentation Regions of interest
- ✓ Quantification Count, measure, intensity, colocalization, 3D measurements, tracking

Data → big(ish) data

One image = $\sim 1 \text{ MB}$ $\lambda * 3 \text{ Z*} 11 \text{ t*} 360 = \sim 12 \text{ GB}$

Can be a challenge to

- Move the data
- Store all your original data
- Keep it safe
- Be able to **find** it again

Some useful things for the microscopist to know about hard-drives and servers

Drive formats:

- NTFS = <u>PC</u> (and Linux understands)
- HFS+ = <u>Mac</u> OS X Extended
- Ext* = Linux
- FAT32 = All (but with some limitations 4GB max file size)

Hard-drives fail, RAID helps (not always)

Programs for viewing your microscope images on your computer

Free basic versions of the confocal software for the particular format

(but FIJI opens them all)

Irfanview opens 16-bit TIFF (PC only)

Are we going to use Photoshop?

No

Pho-to-shop [foh-toh-shop]

verb (used with object), Pho·to·shopped, Pho·to·shop·ping.

(sometimes lowercase) to alter (an image) using this software: Her face is nicely Photoshopped in the ad. They've photoshopped the car onto an image of a beautiful beach.

GNU Image Manipulation Program

http://www.gimp.org/

FIJI/ImageJ and reasons to use it

FIJI - FIJI Is Just ImageJ http://fiji.sc/wiki/index.php/Fiji

(FIJI is ImageJ + a set of useful plugins, an update tool, 3D Java, scripting and . . .)

It's free (no cost, no licenses to deal with)

- Opens nearly anything
- It is extremely useful many and powerful features
- It works on any OS
- Open source (can view and modify the source code you know what it is doing)
- Active development lots of other people like you using it
- Has an incredible number and variety of plugins

Overview of the FIJI software

Plugins and Macros are extensions of core functions - write them yourself or use ones written by other people

Oddities of the FIJI software

- Multiple Document Interface lots of little windows

 File/Close All is quite useful
- Java based System and Java clipboards
- Undo doesn't always work File/Revert (ctrl-R)
- Ctrl-L gives command Finder

ImageJ2

http://developer.imagej.net/downloads

Help/Switch To Modern Mode

Headless | N-dimensional formats | Complete re-write

Opening a file

File:

FirstImage.tif

Really basic functions

+ = Zoom in

- = Zoom out

5 = 1:1 zoom

Hold space bar and left click drag = Pan

Duplicate the image: /Image/Duplicate (or ctrl+shift+D on a PC)

Images are in many formats

Microscope specific formats

LIF, LEI, LSM, ZVI, STK, OIB, OIF, dv, ICS/IDS, ICS2, r3d, PIC, IPL, CXD, SDT, IPW, ND2, RAW, IMS. . .

General formats

TIF, GIF, BMP, PNG, SVG, JPEG, MPEG, QuickTime, AVI, SWF, PICT, EPS, PDF, PSD, XCF . . .

Which of these are good and what characteristics do they have?

Two types of images

Bitmap/raster

Vector

Array of pixels

Mathematical/geometric equations
Scalable
Efficient for some things

Illustrator/Inkscape

Compression

- How different do the images look?
- Which ones are wise to use?

(I made the JPEGs different using Edit/Options/InputOutput

Compression types

Lossless	Lossy
Encodes exactly the original data (encodes redundant information and some other clever tricks)	Throws some information away to reduce the file size
You can get back the original	You <u>can not</u> get the original back
Sometimes not that much smaller	Allows a much smaller file, Range of quality/size
Zip etc (takes time), LZW	
PNG	JPEG

Intensity range and displaying them optimally and fairly

What intensities are in an image?

Mouse over for: Coordinates | Intensity

Analog to digital conversion

Histogram

The image histogram is a very useful way of looking at the intensities in the image

>>

Bit-depth

The range of intensities can be represented with different numbers of gray-levels

Even more Bit-depths

- Signed and unsigned 16 bit
 - 0-65,535
 - -32,768 to + 32,767

(What is a negative intensity?)

• 32-bit float - 4.3 billion + Decimals + NotaNumber

How many grey levels do we need?

8-bit enough for most things:

Human eye (without adaptation)

Monitors - contrast factor

Printers

But it is useful to use more in microscopy?

Dynamic range

What span of a measurement can be measured?

Signal at the greatest intensity of light measurable Lowest intensity (Noise limited)

How many grey levels do we need?

How many photons/px are involved?

What if only some of the range is filled?

Scaling

Contrast in image scaling

Full range of CCD

Full range of image

Slight clipping

Why is this useful, when is this ok, how much is ok?

Exporting an 8-bit copy

Ctrl+shift+D =Duplicate

Save your original images - use for quantification

Easy display/publication

Original pixel intensity range stretched or compressed to 8-bit

Which format should I use for export?

Probably makes sense to use the format of the microscope as much as possible, if you do need to export to a standard format . . .

TIFF (aka TIF), and variants

- Lossless
- Suitable bit-depths (8-bit or 24-bit RGB for export)
- Space for metadata (not always populated properly)
- Open
- Pretty much universal

What happens to the numbers?

Scaling has limitations

Auto-scaled to min-max of each image

How many grey-values should you have in your raw images?

Imperfections in image scaling

Avoid scaling any images you want to quantify

Exercise: Fair display

Files:

- A Imageforscaling
- B Imageforscaling

Display these to:

- 1. Reflect the intensities
- 2. Show best structure Make 8-bit copies of each pair

Inverting an image: making a negative

```
Files:
Invert_this.tif
A_Imageforscaling
```

- Try inverting an image: Edit/Invert
- Look at the histogram
- Mouse-over the pixels
- Scale it
- Compare to original

Linearity in intensity display

That sounds a good idea, let's do that

Problem Solution

Gamma

File: gamma

output = input

"Linear" display of brightness: $\gamma = 1$

Stick with 1 if you can, certainly state if any images are not linear

You can **change** your image: <u>/process/math/gamma</u>

Color

The 10 million colors we can see

Our eyes

Monitors etc fit in with our eyes - tiny little R, G or B pixels

24-bit RGB

 $256^3 = 16.77$ million

Color in imaging

Most of it is actually pseudo-color in fluorescence:

Sensitive monochrome detector

Bayer mask in color camera

We use color to add context and aid interpretation

Lookup tables

Different ways of displaying the same image . . .

Good for adjusting the gain and offset on the confocal

Helpful for distinguishing similar intensities

Try some LUTs

File: gamma

- Try lots of different ones
- Analyze/Tools/Calibration bar
- Inverted LUT same as image inversion? Mouse over.
- Do you think inverted is a good way of displaying?

000-gray.lut	001-fire.lut	002-spectrum.lut	003-ice.lut
004-phase.lut	005-random.lut	16_colors.lut	16_equal.lut
16_ramps.lut	20_colors.lut	32_colors.lut	5_ramps.lut
_			
6_reserved_colors.lut	6_shades.lut	amber.lut	auxctq.lut
blue_orange.lut	blue_orange_icb.lut	brain.lut	brgbcmyw.lut
	10000		
cells.lut	cequal.lut	cmy-cyan.lut	cmy-magneta.lut
cmy-yellow.lut	cmy.lut	cold.lut	cool.lut
only yellowide	ony.ut	Coldina	COOLIGE
		200 16 14	250 h.t
cti_ras.lut	edges.lut	gem-16.lut	gem-256.lut
gold.lut	gyr_centre.lut	heart.lut	hue.lut
			_
hue_ramps_08.lut	hue_ramps_16.lut	iman.lut	invert_gray.lut
isocontour.lut	log_down.lut	log_up.lut	mixed.lut
neon-blue.lut	neon-green.lut	neon-magenta.lut	neon-red.lut
pastel.lut	rgb-blue.lut	rgb-green.lut	rgb-red.lut
		100	
royal.lut	sepia.lut	siemens.lut	smart.lut
split_blackblue_redwhite.lut	split_blackwhite_ge.lut	split_blackwhite_warmmetal.lut	split_bluered_warmmetal.lut
system_lut.lut	thal_16.lut	thal_256.lut	thallium.lut
topography.lut	unionjack.lut	vivid.lut	warhol.lut

Color display

File:

FluorescentCells

- ✓ RGB and Composite (more channels, more flexible)
- ✓ Channels Tool
- ✓ Split and Merge

Color display isn't always useful

4 or more color images

Exercise: Color display

- ✓ RGB and Composite (more channels, more flexible)
- ✓ Channels Tool
- ✓ Split and Merge

```
Files:
ImageQuad_A
ImageQuad_B
ImageQuad_C
ImageQuad_DAPI
```

Take these 4 channels of the same cell, make a composite with the channels pseudo-colored and scaled as you think best displays them and export as 24-bit RGB tiff

Should you scale the 4-channels in the same way? Can you split the final RGB back to your 4 images?

Other color spaces

File:

H&E.tiff

- Image/type/HSB stack or RGB stack
- Image/Adjust/Threshold Colour